
The gory details of the
build service backend

Michael Schröder
Novell, Inc

© February, 2007 Novell Inc.
2

Outline

Data management
• storing projects and packages
• the source repository

Server framework
• data flow client to the backend
• example: listing package files

Building packages
• from scheduler to build host and back
• scalability issues

Automatic rebuild triggering
• package meta files

© February, 2007 Novell Inc.
3

Backend basics

Projects, packages and repositories

KDE:KDE4

openSUSE
10.2

Fedora
Core6

kdelibs kdetoys

openSUSE:10.2

Apache

...

© February, 2007 Novell Inc.
4

How projects are stored

A project consists of
• a project name
• project meta data (summary, description, repositories...)
• project build configuration (setup information, preferred

binary packages, rpm macros...)
• multiple packages

projects/home:mlschroe.xml
 /home:mlschroe.conf (if not empty)
 /home:mlschroe.pkg/

© February, 2007 Novell Inc.
5

How packages are stored

A package consists of
• a package name
• package meta data (summary, description, ...)
• package revision log

/projects/home:mlschroe.pkg/
screen.xml
screen.rev

Revision log format (last line is latest revision):

12|76|f6d2e7a398fdbd801d7ddc18eaa76e2d|4.0.2|1155842871|mlschroe|

Revision version
 Release number checkin time
 Source repository identifier checkin user

© February, 2007 Novell Inc.
6

The source repository

Manages sources of packages
• allows retrieval of old versions
• switching to new source revisions must be atomic
• identical files in multiple projects and revisions should

be shared, i.e. not take extra disk space

Implementation
• files are prefixed with the md5sum value of their

content
• a revision is identified by the md5sum over a MD5SUMS

file
• nothing gets deleted, just new files added

© February, 2007 Novell Inc.
7

The source repository (cont.)

Example: the screen package

revision:
 screen_4.0.2-4.1.diff.gz

screen_4.0.2-4.1.dsc
screen_4.0.2-4.1.spec
screen_4.0.2.orig.tar.gz

MD5SUMS:
8f8725fa9b3385042115e84a06866ce6 screen_4.0.2-4.1.diff.gz
64276af3d6f9c364528fb49223b995a3 screen_4.0.2-4.1.dsc
47cc233ceb7ba64bf43807978b52c40a screen_4.0.2-4.1.spec
ed68ea9b43d9fba0972cb017a24940a1 screen_4.0.2.orig.tar.gz

md5sum MD5SUMS:
f6d2e7a398fdbd801d7ddc18eaa76e2d MD5SUMS

© February, 2007 Novell Inc.
8

The source repository (cont.)

Example: the screen package

source/screen/
 8f8725fa9b3385042115e84a06866ce6-screen_4.0.2-4.1.diff.gz

64276af3d6f9c364528fb49223b995a3-screen_4.0.2-4.1.dsc
47cc233ceb7ba64bf43807978b52c40a-screen_4.0.2-4.1.spec
ed68ea9b43d9fba0972cb017a24940a1-screen_4.0.2.orig.tar.gz

 ...
 ...

f6d2e7a398fdbd801d7ddc18eaa76e2d-MD5SUMS
 ...

Revision identifier is MD5SUMS' md5sum:
f6d2e7a398fdbd801d7ddc18eaa76e2d

© February, 2007 Novell Inc.
9

The source repository (cont.)

How to retrieve a file from the repository:

Task: read file screen_4.0.2-4.1.spec from source revision
f6d2e7a398fdbd801d7ddc18eaa76e2d package screen:

• enter directory source/screen

• read f6d2e7a398fdbd801d7ddc18eaa76e2d-MD5SUMS

• find md5sum of file screen_4.0.2-4.1.spec:
47cc233ceb7ba64bf43807978b52c40a

• read file
47cc233ceb7ba64bf43807978b52c40a-screen_4.0.2-4.1.spec

© February, 2007 Novell Inc.
10

Server Framework

Flexible, extensible http server framework
• written for the build server, perl5
• supports file/cpio streaming
• automatic parameter type checking
• forks a process for every request, but requests taking long

time can be passed to a special process
– used for AJAX updates of build status and for logfile

streaming
– if load gets too high, return “retry after n seconds”

error

© February, 2007 Novell Inc.
11

Server Framework (cont.)

Example: getting a source listing

osc

API

src server

http://api.opensuse.org/source/home:mlschroe/screen

http://storage:5352/source/home:mlschroe/screen

dispatch
table[]

getfilelist()

© February, 2007 Novell Inc.
12

Server Framework (cont.)

Requests are dispatched via a dispatch array:
my $dispatches = [...

 '/source/$project/$package rev?' => \&getfilelist,

...];

sub getfilelist {

 my ($cgi, $projid, $packid) = @_;
 my $rev = getrev($projid, $packid, $cgi->{'rev'});
 my $files = lsrep($projid, $packid, $rev->{'srcmd5'});
 my $dir = {'name' => $packid, 'rev' => $rev->{'rev'}};

 ...

 $dir->{'entry'} = \@res;
 return ($dir, $BSXML::dir);

}

© February, 2007 Novell Inc.
13

Server Framework (cont.)

Conversion to XML is done via the XML::Structured module

$BSXML::dir = [<directory name=”screen” rev=”12”>
 'directory' => <entry name=”screen_4.0.2-4.1.d...”
 'name', size=”33462” />
 'rev', <entry name=”screen_4.0.2-4.1.dsc”
 [$BSXML::entry], size=”624” />
]; <entry name=”screen_4.0.2-4.1.spec”
 size=”1611” />
 <entry name=”screen_4.0.2.orig...”
$BSXML::entry = [size=”840519” />
 'entry' => </directory>
 'name',
 'size',
];

$dirxml = XMLout($BSXML::dir, $dir);
$dir = XMLin($BSXML::dir, $dirxml);

© February, 2007 Novell Inc.
14

Backend Architecture

Src server Rep server

Scheduler
x86_64

Scheduler
i586

Job
dispatcher

Build
ClientBuild

ClientBuild
Clients

Job
queue

Repos

© February, 2007 Novell Inc.
15

Backend Architecture

Src server Rep server

Scheduler
x86_64

Scheduler
i586 Job

dispatcher

Build
ClientBuild

ClientBuild
Clients

Job
queue

Repos

getprojpack

• return configuration data about
every project and package
• select newest source revision for

every package
• select right spec/dsc file for every

package / repository
• parse spec/dsc files and return

package dependencies

© February, 2007 Novell Inc.
16

Backend Architecture

Src server Rep server

Scheduler
x86_64

Scheduler
i586

Job
dispatcher

Build
ClientBuild

ClientBuild
Clients

Job
queue

Repos

• read repository data
for every project
• this includes

provides/requires for
every binary package

© February, 2007 Novell Inc.
17

Backend Architecture

Src server Rep server

Scheduler
x86_64

Scheduler
i586

Job
dispatcher

Build
ClientBuild

ClientBuild
Clients

Job
queue

Repos

• expand package
dependencies with
repository data
• sort packages by

dependencies
• ignore packages blocked

by other packages
• add job to job queue if

package needs to be
rebuilt

© February, 2007 Novell Inc.
18

Backend Architecture

Src server Rep server

Scheduler
x86_64

Scheduler
i586

Job
dispatcher

Build
ClientBuild

ClientBuild
Clients

Job
queue

Repos

• scan job queue for
unassigned jobs
• assign to idle build

clients

build

© February, 2007 Novell Inc.
19

Backend Architecture

Src server Rep server

Scheduler
x86_64

Scheduler
i586

Job
dispatcher

Build
ClientBuild

ClientBuild
Clients

Job
queue

Repos• get package sources and
build configuration from
source server
• get binary packages from

repository server
• build the package

getsources, getconfig

getbinaries

© February, 2007 Novell Inc.
20

Backend Architecture

Src server Rep server

Scheduler
x86_64

Scheduler
i586

Job
dispatcher

Build
ClientBuild

ClientBuild
Clients

Job
queue

Repos• transmit built binary
packages and the log file
back to the repository
server

putjob

© February, 2007 Novell Inc.
21

Backend Architecture

Src server Rep server

Scheduler
x86_64

Scheduler
i586

Job
dispatcher

Build
ClientBuild

ClientBuild
Clients

Job
queue

Repos
• inform scheduler that

package build is
completed
• scheduler moves

packages into repository
and searches for new
packages that need
building

© February, 2007 Novell Inc.
22

Scalability

Simplest configuration: everything on one host

repsrv/
dispatch

srcsrv

sched
i586

sched
x86_64

worker

© February, 2007 Novell Inc.
23

Scalability

Put build client on extra host

repsrv/
dispatch

srcsrv

sched
i586

sched
x86_64

worker

© February, 2007 Novell Inc.
24

Scalability

Add more clients

repsrv/
dispatch

srcsrv

sched
i586

sched
x86_64

worker workerworker

© February, 2007 Novell Inc.
25

Scalability

Put source server on extra host

repsrv/
dispatch

srcsrv

sched
i586

sched
x86_64

worker workerworker

© February, 2007 Novell Inc.
26

Scalability

Partition repositories

repsrv/
dispatch

srcsrv

sched
i586

sched
x86_64

worker workerworker

repsrv/
dispatch

sched
i586

© February, 2007 Novell Inc.
27

Rebuild triggering

Packages automatically get rebuild if a package they
depend on is changed

• naïve implementation that just looks for changed binary
packages would lead to endless builds in case of
dependency cycles

• Example:
– gnome-keyring: BuildRequires: CASA-devel
– CASA: BuildRequires: gtk-sharp
– gtk-sharp: BuildRequires gtkhtml2-devel

 → gtkhtml2 → libgnome-keyring.so.0
• Solution: use source identifiers, track change propagation,

and cut cycles

© February, 2007 Novell Inc.
28

The dependency meta file

The dependency meta file consists of all package source
identifiers used (direct and indirect)
Example: CASA package

• level 0: own source identifier
e71a2f9181669e4c787e6fbf7ce63414 CASA

• level 1: source md5 of direct dependencies
...
8e72d8e96df97cbea7707ba26a3fc31d gtk-sharp
...

• level 2: source md5 of dependencies over one hop
...
0724adba09a56cea17d41fdb35450d45 gtk-sharp/gnome-keyring
...

Packages are triggered for rebuild iff the meta file of the
last build is different from the calculated one

© February, 2007 Novell Inc.
29

Conclusion

Data storage
• project and package data is stored in simple xml files
• the source repository stores package files in an efficient

way, nothing gets deleted

Server Framework
• new functions can be added with just a couple of lines of

perl code

Package building
• scheduler → dispatcher → build client → repository
• all data is transferred via http, no NFS

Rebuild triggering
• works by comparing meta files containing source md5sums

General Disclaimer
This document is not to be construed as a promise by any participating company to
develop, deliver, or market a product. Novell, Inc., makes no representations or warranties
with respect to the contents of this document, and specifically disclaims any express or
implied warranties of merchantability or fitness for any particular purpose. Further,
Novell, Inc., reserves the right to revise this document and to make changes to its content,
at any time, without obligation to notify any person or entity of such revisions or changes.
All Novell marks referenced in this presentation are trademarks or registered trademarks of
Novell, Inc. in the United States and other countries. All third-party trademarks are the
property of their respective owners.

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike
2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-
nc-sa/2.5/.

For other licenses contact author.

