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Outline

Data management
• storing projects and packages
• the source repository

Server framework
• data flow client to the backend
• example: listing package files

Building packages
• from scheduler to build host and back
• scalability issues

Automatic rebuild triggering
• package meta files
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Backend basics

Projects, packages and repositories

KDE:KDE4

openSUSE
10.2

Fedora
Core6

kdelibs kdetoys

openSUSE:10.2

Apache

...
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How projects are stored

A project consists of
• a project name
• project meta data (summary, description, repositories...)
• project build configuration (setup information, preferred 

binary packages, rpm macros...)
• multiple packages

projects/home:mlschroe.xml
        /home:mlschroe.conf  (if not empty)
        /home:mlschroe.pkg/
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How packages are stored

A package consists of
• a package name
• package meta data (summary, description, ...)
• package revision log

/projects/home:mlschroe.pkg/
screen.xml
screen.rev

Revision log format (last line is latest revision):

12|76|f6d2e7a398fdbd801d7ddc18eaa76e2d|4.0.2|1155842871|mlschroe|

Revision                               version
   Release number                            checkin time
      Source repository identifier                      checkin user
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The source repository

Manages sources of packages
• allows retrieval of old versions
• switching to new source revisions must be atomic
• identical files in multiple projects and revisions should 

be shared, i.e. not take extra disk space

Implementation
• files are prefixed with the md5sum value of their 

content
• a revision is identified by the md5sum over a MD5SUMS 

file
• nothing gets deleted, just new files added
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The source repository (cont.)

Example: the screen package

revision:    
  screen_4.0.2-4.1.diff.gz

screen_4.0.2-4.1.dsc
screen_4.0.2-4.1.spec
screen_4.0.2.orig.tar.gz

MD5SUMS:
8f8725fa9b3385042115e84a06866ce6  screen_4.0.2-4.1.diff.gz
64276af3d6f9c364528fb49223b995a3  screen_4.0.2-4.1.dsc
47cc233ceb7ba64bf43807978b52c40a  screen_4.0.2-4.1.spec
ed68ea9b43d9fba0972cb017a24940a1  screen_4.0.2.orig.tar.gz

md5sum MD5SUMS:
f6d2e7a398fdbd801d7ddc18eaa76e2d  MD5SUMS
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The source repository (cont.)

Example: the screen package

source/screen/
 8f8725fa9b3385042115e84a06866ce6-screen_4.0.2-4.1.diff.gz

64276af3d6f9c364528fb49223b995a3-screen_4.0.2-4.1.dsc
47cc233ceb7ba64bf43807978b52c40a-screen_4.0.2-4.1.spec
ed68ea9b43d9fba0972cb017a24940a1-screen_4.0.2.orig.tar.gz

    ...
    ...

f6d2e7a398fdbd801d7ddc18eaa76e2d-MD5SUMS
    ...

Revision identifier is MD5SUMS' md5sum:
f6d2e7a398fdbd801d7ddc18eaa76e2d
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The source repository (cont.)

How to retrieve a file from the repository:

Task: read file screen_4.0.2-4.1.spec from source revision 
f6d2e7a398fdbd801d7ddc18eaa76e2d package screen:

• enter directory source/screen

• read f6d2e7a398fdbd801d7ddc18eaa76e2d-MD5SUMS

• find md5sum of file screen_4.0.2-4.1.spec: 
47cc233ceb7ba64bf43807978b52c40a

• read file
47cc233ceb7ba64bf43807978b52c40a-screen_4.0.2-4.1.spec
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Server Framework

Flexible, extensible http server framework
• written for the build server, perl5
• supports file/cpio streaming
• automatic parameter type checking
• forks a process for every request, but requests taking long 

time can be passed to a special process
– used for AJAX updates of build status and for logfile 

streaming
– if load gets too high, return “retry after n seconds” 

error
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Server Framework (cont.)

Example: getting a source listing

osc

API

src server

http://api.opensuse.org/source/home:mlschroe/screen

http://storage:5352/source/home:mlschroe/screen

dispatch
table[]

getfilelist()
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Server Framework (cont.)

Requests are dispatched via a dispatch array:
my $dispatches = [ ...

    '/source/$project/$package rev?' => \&getfilelist,

... ];

sub getfilelist {

    my ($cgi, $projid, $packid) = @_;
    my $rev = getrev($projid, $packid, $cgi->{'rev'});
    my $files = lsrep($projid, $packid, $rev->{'srcmd5'});
    my $dir = {'name' => $packid, 'rev' => $rev->{'rev'}};  

    ...

    $dir->{'entry'} = \@res;
    return ($dir, $BSXML::dir);

}
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Server Framework (cont.)

Conversion to XML is done via the XML::Structured module

$BSXML::dir = [          <directory name=”screen” rev=”12”>
  'directory' =>           <entry name=”screen_4.0.2-4.1.d...”
    'name',                       size=”33462” />
    'rev',                 <entry name=”screen_4.0.2-4.1.dsc”
    [ $BSXML::entry ],            size=”624” />
];                         <entry name=”screen_4.0.2-4.1.spec”
                                  size=”1611” />
                           <entry name=”screen_4.0.2.orig...”
$BSXML::entry = [                 size=”840519” />
  'entry' =>             </directory>
    'name',
    'size',
];

$dirxml = XMLout($BSXML::dir, $dir);
$dir = XMLin($BSXML::dir, $dirxml);
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Backend Architecture

Src server Rep server

Scheduler
x86_64

Scheduler
i586

Job
dispatcher

Build
ClientBuild

ClientBuild
Clients

Job
queue

Repos
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Backend Architecture

Src server Rep server

Scheduler
x86_64

Scheduler
i586 Job

dispatcher

Build
ClientBuild

ClientBuild
Clients

Job
queue

Repos

getprojpack

• return configuration data about 
every project and package
• select newest source revision for 

every package
• select right spec/dsc file for every 

package / repository
• parse spec/dsc files and return 

package dependencies
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Backend Architecture

Src server Rep server

Scheduler
x86_64

Scheduler
i586

Job
dispatcher

Build
ClientBuild

ClientBuild
Clients

Job
queue

Repos

• read repository data 
for every project
• this includes 

provides/requires for 
every binary package
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Backend Architecture

Src server Rep server

Scheduler
x86_64

Scheduler
i586

Job
dispatcher

Build
ClientBuild

ClientBuild
Clients

Job
queue

Repos

• expand package 
dependencies with 
repository data
• sort packages by 

dependencies
• ignore packages blocked 

by other packages
• add job to job queue if 

package needs to be 
rebuilt
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Backend Architecture

Src server Rep server

Scheduler
x86_64

Scheduler
i586

Job
dispatcher

Build
ClientBuild

ClientBuild
Clients

Job
queue

Repos

• scan job queue for 
unassigned jobs
• assign to idle build 

clients

build
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Backend Architecture

Src server Rep server

Scheduler
x86_64

Scheduler
i586

Job
dispatcher

Build
ClientBuild

ClientBuild
Clients

Job
queue

Repos• get package sources and 
build configuration from 
source server
• get binary packages from 

repository server
• build the package

getsources, getconfig

getbinaries
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Backend Architecture

Src server Rep server

Scheduler
x86_64

Scheduler
i586

Job
dispatcher

Build
ClientBuild

ClientBuild
Clients

Job
queue

Repos• transmit built binary 
packages and the log file 
back to the repository 
server

putjob
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Backend Architecture

Src server Rep server

Scheduler
x86_64

Scheduler
i586

Job
dispatcher

Build
ClientBuild

ClientBuild
Clients

Job
queue

Repos
• inform scheduler that 

package build is 
completed
• scheduler moves 

packages into repository 
and searches for new 
packages that need 
building



© February, 2007 Novell Inc.
22

Scalability

Simplest configuration: everything on one host

repsrv/
dispatch

srcsrv

sched
i586

sched
x86_64

worker
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Scalability

Put build client on extra host

repsrv/
dispatch

srcsrv

sched
i586

sched
x86_64

worker
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Scalability

Add more clients

repsrv/
dispatch

srcsrv

sched
i586

sched
x86_64

worker workerworker
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Scalability

Put source server on extra host

repsrv/
dispatch

srcsrv

sched
i586

sched
x86_64

worker workerworker
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Scalability

Partition repositories

repsrv/
dispatch

srcsrv

sched
i586

sched
x86_64

worker workerworker

repsrv/
dispatch

sched
i586
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Rebuild triggering

Packages automatically get rebuild if a package they 
depend on is changed

• naïve implementation that just looks for changed binary 
packages would lead to endless builds in case of 
dependency cycles

• Example:
– gnome-keyring: BuildRequires: CASA-devel
– CASA: BuildRequires: gtk-sharp
– gtk-sharp: BuildRequires gtkhtml2-devel

                → gtkhtml2 → libgnome-keyring.so.0
• Solution: use source identifiers, track change propagation, 

and cut cycles
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The dependency meta file

The dependency meta file consists of all package source 
identifiers used (direct and indirect)
Example: CASA package

• level 0: own source identifier
e71a2f9181669e4c787e6fbf7ce63414 CASA

• level 1: source md5 of direct dependencies
...
8e72d8e96df97cbea7707ba26a3fc31d gtk-sharp
...

• level 2: source md5 of dependencies over one hop
...
0724adba09a56cea17d41fdb35450d45 gtk-sharp/gnome-keyring
...

Packages are triggered for rebuild iff the meta file of the 
last build is different from the calculated one
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Conclusion

Data storage
• project and package data is stored in simple xml files
• the source repository stores package files in an efficient 

way, nothing gets deleted

Server Framework
• new functions can be added with just a couple of lines of 

perl code

Package building
• scheduler → dispatcher → build client → repository
• all data is transferred via http, no NFS

Rebuild triggering
• works by comparing meta files containing source md5sums
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