Laptop 2.0

Timo Hönig, Holger Macht, Helmut Schaa

31. May 2008

- 1 Power Management
 - The Complete Disaster
 - The Results
 - Conclusion
- 2 Fingerprint Reader Support
 - Hardware
 - Software

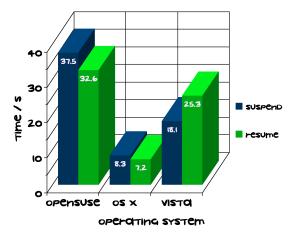
- 1 Power Management
 - The Complete Disaster
 - The Results
 - Conclusion
- 2 Fingerprint Reader Support
 - Hardware
 - Software

Recap: LinuxTag 2007

- The suspend challenge openSUSE, Mac OS X and Windows Vista
- Hardware: Apple MacBook, Intel Core 2 Duo (1,83 GHz), 2 GBvte RAM
- openSUSE lost all disciplines

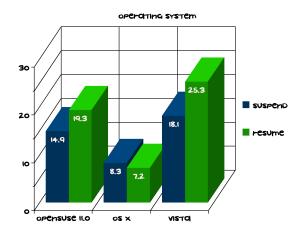
The Challenge

- Suspend to disk right after booting the system
- Suspend to disk with many applications running
 - Firefox
 - Thunderbird
 - GIMP
 - OpenOffice Writer
 - RealPlayer

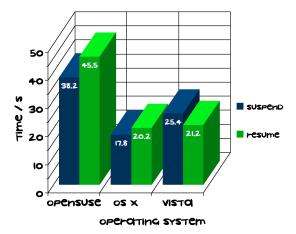


- 1 Power Management
 - The Complete Disaster
 - The Results
 - Conclusion
- 2 Fingerprint Reader Support
 - Hardware
 - Software

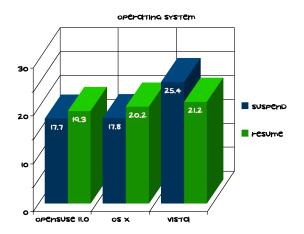
Suspend to Disk (Fresh Boot) – Plain Numbers


Last year (LinuxTag 2007)

Suspend to Disk (Fresh Boot) – Plain Numbers


This year (LinuxTag 2008)

Suspend to Disk (Applications Running) – Plain Numbers


Last year (LinuxTag 2007)

Suspend to Disk (Applications Running) – Plain Numbers

This year (LinuxTag 2008)

- 1 Power Management
 - The Complete Disaster
 - The Results
 - Conclusion
- 2 Fingerprint Reader Support
 - Hardware
 - Software

Suspend to Disk (Applications Running) – Commented

- Last year: Mac OS X suspends and resumes only a little bit faster than Vista, openSUSE needs about two times longer
- This year: openSUSE takes the crown!

- 1 Power Management
 - The Complete Disaster
 - The Results
 - Conclusion
- 2 Fingerprint Reader Support
 - Hardware
 - Software

Supported platforms

- UPEK/SGS Thomson Microelectronics fingerprint reader (USB ID 0483:2016)
- Supported laptops
 - ASUS
 - Dell
 - IBM/Lenovo
 - Toshiba

- 1 Power Management
 - The Complete Disaster
 - The Results
 - Conclusion
- 2 Fingerprint Reader Support
 - Hardware
 - Software

openSUSE Integration

- openSUSE 11 ships with full support for GNOME (GDM, gnome-screensaver)
- KDE3/KDE4 support is almost ready, will need some online update or build service update

- 3 Trying to Improve
- 4 Power Management
 - CPU Power Management
 - Running Battery powered...
 - Wireless
 - Storage
 - Sound
 - Summing Up...
- 5 Dock Stations and Bay Devices
 - GNOME Docker

Laptop Database

- Internal laptop database containing information about ACPI support, PCI information, etc.
- With openSUSE 10.3: Extended with test data regarding the Energy Star specification

Energy Star Compliance

Software and Hardware Involvement

- Systems must meet a certain software configuration
- Power Consumption must not need exceed certain limits

Operational Mode: *Idle*

- System AC Powered
- Display is off
- Idle limit for laptops with powerful graphic cards: 22.0Watt
- Idle limit for all other laptops: 14.0 Watt

Power Consumption Comparison: Lenovo ThinkPad T61

openSUSE 10.3

- Idle power consumption: 14.35*W*
- 0.35W above the Energy Star limit

Power Consumption Comparison: Lenovo ThinkPad T61

openSUSE 10.3

- Idle power consumption: 14.35*W*
- 0.35W above the Energy Star limit

openSUSE 11.0

- Idle power consumption: 12.92*W*
- Below 14.0 W and thus below the Energy Star limit

Power Consumption Comparison: Lenovo ThinkPad T61

openSUSE 10.3

- Idle power consumption: 14.35W
- 0.35W above the Energy Star limit

openSUSE 11.0

- Idle power consumption: 12.92W
- Below 14.0 W and thus below the Energy Star limit

How comes?

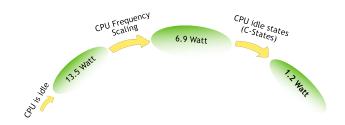
CPU Power Management

- 3 Trying to Improve
- 4 Power Management
 - CPU Power Management
 - Running Battery powered...
 - Wireless
 - Storage
 - Sound
 - Summing Up...
- 5 Dock Stations and Bay Devices
 - GNOME Docker

CPU Power Management

Known Techniques

CPU Frequency Scaling (ACPI P-States)


- Reduce CPU frequency when not needed
- Intel SpeedStep, AMD PowerNow, etc.

CPU idle states (ACPI C-States)

Set CPU to low power mode if no instructions are executed

Intel Core 2 Duo T7700 Power Consumption

Conclusion

- Huge potential in deepest sleep mode
- Common goal: Be idle as long as possible!
- Policy also knows as race to idle

CPU Power Management

Bad Boys

Processes are waking up the CPU

- Desktop applications
- System daemons
- Kernel threads

Solution: Fix applications and kernel

- Applications must not unnecessarily wake up the CPU
- Ongoing process over the last couple of month (cf. PowerTop)
- It seems to pay off!

Running Battery powered...

- 3 Trying to Improve
- 4 Power Management
 - CPU Power Management
 - Running Battery powered...
 - Wireless
 - Storage
 - Sound
 - Summing Up...
- 5 Dock Stations and Bay Devices
 - GNOME Docker

Running Battery powered...

Running Battery powered...

- Not polluting the environment when on AC is good, but...
- ...isn't there something we can do for typical laptop use cases?
- Users do accept a certain amount of performance loss in favour of longer battery runtimes

- 3 Trying to Improve
- 4 Power Management
 - CPU Power Management
 - Running Battery powered...
 - Wireless
 - Storage
 - Sound
 - Summing Up...
- 5 Dock Stations and Bay Devices
 - GNOME Docker

Wireless

Basic approach of IEEE 802.11 specification

- Most power is spent when packages are submitted
- Consequence: Short bursts of submission, afterwards clients goes to sleep
- f. race to idle

Clients: Two modes

- Active: Radio always on
- Sleep mode: Intermittently turning off the radio
 - Periodic wake-ups to check if packages are available

Wireless

Supported Drivers

IWL3945 and IWL4945

Example: Intel PRO/Wireless 3945ABG, no traffic

- Full power: $\approx 1.15W$
- Sleep mode, but fully functional: $\approx 0.3W$

```
$ echo 6 > \
/sys/bus/pci/drivers/iwl*/000*/power_level
```


- 3 Trying to Improve
- 4 Power Management
 - CPU Power Management
 - Running Battery powered...
 - Wireless
 - Storage
 - Sound
 - Summing Up...
- 5 Dock Stations and Bay Devices
 - GNOME Docker

SATA: Aggressive Link Power Management

- SATA link to the disk is put into low power mode when no IO
- Automatically woken up when requests arrive

Example: Fujitsu hard disk with 80 GB (SATA)

Full power: $\approx 2.5W$

■ ALPM enabled: $\approx 1.8W$

\$ echo {min/medium}_power > \
/sys/class/scsi_host/\$HOST/link_power_management_policy

- 3 Trying to Improve
- 4 Power Management
 - CPU Power Management
 - Running Battery powered...
 - Wireless
 - Storage
 - Sound
 - Summing Up...
- 5 Dock Stations and Bay Devices
 - GNOME Docker

Shutdown when Idle

- Disable sound cards after time out period
- Short wakeup delay
- Power savings: ≈ 0.5 Watt

```
$ echo 10 > \
/sys/module/snd_hda_intel/parameters/power_save
```


Summing Up...

- 3 Trying to Improve
- 4 Power Management
 - CPU Power Management
 - Running Battery powered...
 - Wireless
 - Storage
 - Sound
 - Summing Up...
- 5 Dock Stations and Bay Devices
 - GNOME Docker

Summing Up...

Possible Power Savings

Component	Power Saving
Hard disk	$\approx 0.7W$
Wireless	$\approx 0.8W$
Sound card	$\approx 0.5W$
	$\approx 2.0W$
CPU	Unsafe coefficient
	2.0W + CPU

Summing Up...

Power Consumption Comparison: Lenovo ThinkPad T61

Prerequisites

- Battery powered
- Display off

openSUSE 10.3

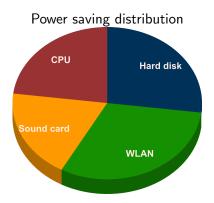
■ Idle power consumption: 11.11*W*

Power Consumption Comparison: Lenovo ThinkPad T61

Prerequisites

- Battery powered
- Display off

openSUSE 10.3


■ Idle power consumption: 11.11*W*

openSUSE 11.0

- Idle power consumption: 8.51*W*
- Makes up $\approx 23\%$
- Power savings: 11.11W 8.51W = 2.6W

Summing Up...

Power Savings	
Component	Power Saving
Hard disk	$\approx 0.7W$
Wireless	$\approx 0.8W$
Sound card	$\approx 0.5W$
CPU	$\approx 0.6W$
	$\approx 2.6W$

Dock Stations and Bays

Ongoing development efforts

- Lot of work supporting dock stations and bay devices in a generic way
- Always considered as: "Does not work anyway"

With 11.0...

Everything which does not work is considered a bug. So file it!

GNOME Docker

- 3 Trying to Improve
- 4 Power Management
 - CPU Power Management
 - Running Battery powered...
 - Wireless
 - Storage
 - Sound
 - Summing Up...
- 5 Dock Stations and Bay Devices
 - GNOME Docker

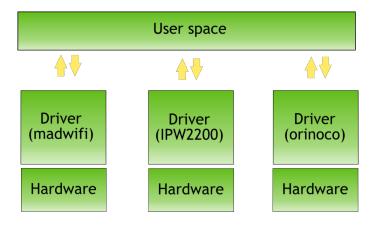
GNOME Docker

- Dock station applet caring about:
 - User notifications
 - Hotkeys (e.g. FN-F9)
 - External displays connected to the dock (xrandr)
- GNOME Docker will care about:
 - Safely removing devices in the dock

- 6 Wireless
 - The New Wireless Stack mac80211
 - Overview of Wireless Drivers
 - Which Card Works Reliable?
 - What Next?
- 7 NetworkManager
 - Features

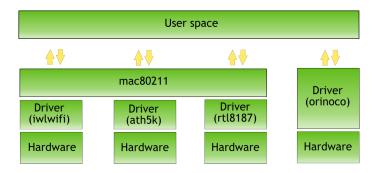
The New Wireless Stack mac80211

- 6 Wireless
 - The New Wireless Stack mac80211
 - Overview of Wireless Drivers
 - Which Card Works Reliable?
 - What Next?
- 7 NetworkManager
 - Features


From d80211 to mac80211

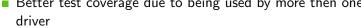
- Devicescape released the d80211 stack in 2006 to the open source community
- The stack was cleaned up and renamed to mac80211 for inclusion in the Linux kernel 2.6.22
- Implements functions of the 802.11 specification needed by nearly all wireless drivers

The New Wireless Stack mac80211


Former Architecture

The New Wireless Stack mac80211

Architecture with mac80211



Advantages

Wireless

- No need to reinvent the wheel for every device driver again
 - ⇒ wireless driver development is much less work
- New device drivers obtain all implemented features at once
 - \Rightarrow WPA support
 - \Rightarrow AP mode support
- All mac80211 based device drivers behave the same.
 - ⇒ user space does not need driver specific quirks anymore
- Better test coverage due to being used by more then one

- 6 Wireless
 - The New Wireless Stack mac80211
 - Overview of Wireless Drivers
 - Which Card Works Reliable?
 - What Next?
- 7 NetworkManager
 - Features

Overview of mac80211 Based Device Drivers

Driver	Supported Devices
ath5k	Atheros chipsets, replaces madwifi
rt2x00	RaLink chipsets
iwlwifi	Intel PRO/Wireless 3945 and 4965, replaces ipw3945
b43	Broadcom PCI chipsets, replacement for bcm43xx
rndis_wlan	Broadcom USB chipsets
rtl818x	Realtek USB chipsets

Content

Wireless

- 6 Wireless
 - The New Wireless Stack mac80211
 - Overview of Wireless Drivers
 - Which Card Works Reliable?
 - What Next?
- 7 NetworkManager
 - Features

Which Card Works Reliable?

Built-in PCI Devices

■ Intel PRO/Wireless 3945/4965

PCMCIA Cards

Atheros

USB Sticks

- Zydas ZD1211
- RaLink rt2570

- 6 Wireless
 - The New Wireless Stack mac80211
 - Overview of Wireless Drivers
 - Which Card Works Reliable?
 - What Next?
- 7 NetworkManager
 - Features

What Next?

Future of mac80211

- Wireless drivers and stack are still under heavy development
 - ⇒ Support for even more devices is on its way
- Features currently worked on:
 - \Rightarrow Mesh networking (802.11s)

Additional information: http://wireless.kernel.org

- 6 Wireless
 - The New Wireless Stack mac80211
 - Overview of Wireless Drivers
 - Which Card Works Reliable?
 - What Next?
- 7 NetworkManager
 - Features

New Features

- Multiple active connections (e.g. wireless and wired connection)
- Support for UMTS and GSM connections
- Static IP configuration
- Support for a broader range of wireless setups

Thanks for coming!

